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Abstract— The TCP congestion-control mechanism is an
algorithm designed to probe the available bandwidth of the
network path that TCP packets traverse. However, it is well-
known that the TCP congestion-control mechanism does
not perform well on networks with a large bandwidth-delay
product due to the slow dynamics in adapting its congestion
window, especially for short-lived flows. One promising so-
lution to the problem is to aggregate and share the path in-
formation among TCP connections that traverse the same
bottleneck path, i.e., Aggregate TCP. However, this paper
shows via a queueing analysis of a generalized processor-
sharing (GPS) queue with regularly-varying service time
that a simple aggregation of local TCP connections together
into a single aggregate TCP connection can result in a severe
performance degradation. To prevent such a degradation,
we introduce a rate-adjustment algorithm. Our simulation
confirms that by utilizing our rate-adjustment algorithm on
aggregate TCP, connections which would normally receive
poor service achieve significant performance improvements
without penalizing connections which already receive good
service.

Keywords— TCP Congestion-Control, Aggregation and
State Sharing, Rate-Adjustment Algorithm, GPS, Regularly-
varying Service Time.

I. INTRODUCTION

�
N the current Internet architecture, there are several rea-
sons that contribute to an increase in the number of si-

multaneous TCP connections between end-to-end destina-
tions. First of all, in current TCP implementations, differ-
ent applications connecting between the same end-to-end
hosts will utilize separate TCP connections. Second, in the
current Internet architecture, end-to-end hosts with more
TCP connections will obtain a larger portion of the bot-
tleneck bandwidth (See Appendix A of [1]), providing an
incentive to increase the number of TCP connections even
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further. Lastly, TCP has been shown to perform poorly
over networks with a large bandwidth-delay product be-
cause the adaptation of its congestion is too slow [2]. By
breaking a single TCP connection into several concurrent
TCP connections, a user can increase his performance at
the cost of performance degradation of other customers.
By all these reasons, it is reasonable to expect that the
number of simultaneous TCP connections will keep in-
creasing, and may lead to persistent congestion if there is
no modification in how to connect end-to-end hosts over
the Internet by TCP.

Many researchers have addressed these problems by
proposing an aggregate TCP. An aggregate TCP would
set-up a universal TCP connection which multiplexes lo-
cal TCP connections into a single, persistent TCP connec-
tion. There are many variants of the aggregate TCP idea,
each of which multiplexes local traffic in different level.
For example, Aggregate TCP [3] multiplexes traffic with
the same end-to-end subnetworks into a single TCP con-
nection. TCP Trunking [4] performs a per-path congestion
control in which all TCP connections between two sites,
which can be any subset of a path TCP packets traverse
on, are aggregated together.

The problem with these aggregate TCP studies is that
they seem to indicate by simulations that the performance
of each individual transfer would be better or at least
equivalent to when utilizing separate TCP connections.
We will show later in Section 2 by a queueing analysis of
a GPS queue with regularly-varying service times that by
simply aggregating traffic together as described in previ-
ous studies can result in significantly worse performances
than without aggregation for some customers under certain
conditions. We then propose the Integrated TCP (I-TCP)
which combines an aggregate TCP with a rate-adjustment
algorithm to prevent such conditions from occurring. We
later show that the overall performance after utilizing I-
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TCP is significantly better than a simple aggregate TCP.
The rest of this paper is organized as follows. In Section

2, issues in the current aggregate and non-aggregate TCP
ideas are discussed. Section 3 presents the rate-adjustment
algorithm, and then follows by the protocol specification.
A simulation study and analysis of the proposed protocol
are presented in Section 4. Finally, Section 5 concludes
the paper and offers suggestions for future work.

II. MOTIVATION

Before we introduce the technique for the rate-
adjustment algorithm, problems with TCP and aggregate
TCP are demonstrated.

In this section, we introduce the following notations.
For any two real functions ������� and ������� , let ���
	��
�����
	��
denote ���������������
	��������
	��� "! . And for any non-negative
random variable # with finite mean and distribution func-
tion $%�&��� , let $('��
	��) *+-,/. �0 �&!�12$%�
34����543 be the distribu-
tion of random variable #76 , where #76 is the residual life-
time of # . Denote by 8:9&;=<>9?;A@B9C;�DE9 the random variable
associated with the busy period distribution, the service
time of the customers, the sojourn time and the stationary
workload distribution in queue F respectively. The classes
of regularly-varying and intermediately regularly-varying
distributions are denoted with GH;JIKG . The definitions of
these classes can be found in Appendix A of [5].

Currently, all hosts transmitting files through the same
bottleneck link utilize separate TCP connections for each
file, with the exception of HTTP1.1 traffic that multiplexes
all files in a web page into a single TCP connection which
can also be treated as a large, single file transfer. If all
connections utilize TCP, then each connection will get ap-
proximately !��ML portion of the bottleneck bandwidth if
there are L active connections, assuming all connections
have equal round-trip delay. Assume the arrival of each
connection being a Poisson process, and host F submits a
file transfer request with the file size having a regularly-
varying distribution of index 1ONP9 . Then the behavior at
the bottleneck link can be described as a M/G/1 Processor
Sharing queue with multiclass customers. The reason we
choose a regularly-varying file size distribution is from the
findings that the distribution of filesizes and the length of
web sessions on the Internet is heavy-tailed [6], [7]. In this
queue, we are interested in the tail of sojourn time distri-
bution, which represents the time required to successfully
transmit a file of a customer in class F . In multiclass M/G/1
Processor Sharing queue, we have the following relation-
ship:

Theorem 1 (Zwart [8]) Suppose customers in all classes
processor-share a single server. For FQ "!R;������S;=L , and non-
integer NP92TU! , V7W�<>9�TX	4Y is regularly-varying of index

1ONP9 if and only if V7W�@B9�TZ	[Y is regularly-varying of index
1ONP9 . Both imply that

V\W]@ 9 T^	4YB�_V7W�< 9 T`��!O1Ha[�b	4Y?;c	7dfe_; (1)

where aEgh! represents the average load in the queue.
In other words, if the input traffic does not overload the

router, then the time required to transmit a file is propor-
tional to filesize. The problem with this scheme on the In-
ternet is, however, customers have no information if the
network is overloaded and there is no incentive to dis-
courage customers from submitting more jobs, which ulti-
mately can overload the available bandwidth and penalize
customers who are well-behaved. Because if a^TU! , the
queue will become unstable and all customers will experi-
ence increasingly longer sojourn time in return.

A simple aggregation of all requests in a class into a
single TCP connection can also introduce a new problem,
however. Although it seems initially that doing so will pro-
vide separation and protection of customers in each class,
it can be shown that an aggregate connection may be in-
duced by other connections to have significantly worse ser-
vice under certain conditions. Suppose we have a fixed
number of subnetworks ( L ) sharing the same bottleneck
link. If each subnetwork aggregates data into a single
TCP connection, then each aggregate TCP connection will
get !���Fi�&!`jkFljmLH� portion of the bottleneck band-
width where F is the number of active aggregate TCP con-
nections. Therefore, this behavior at the bottleneck link
can be approximated by a generalized processor sharing
(GPS) queue with each connection having a weight of
!��ML and hence a guaranteed rate of !��ML . If aggregate
gateways schedule packets to be transmitted by the ag-
gregate TCP by the round-robin algorithm, then we can
model the bandwidth available to each active customer as
a queue where customers in each class processor-share the
available bandwidth assigned by GPS. We are interested
whether the sojourn time distribution of these customers
are better with this scheme than in the separate TCP con-
nections scheme. It is easy to see that even when the total
load aHT"! , the only classes of customers that will be un-
stable are those that transmit more than their guaranteed
bandwidth, therefore offering partial protection for well-
behaved connections from misbehaving connections. The
more interesting case is when ango! . Let p�9 be the guar-
anteed rate for the connection F , and aq9 be the offered load
of the connection F where a% _r�s9]t * a 9 .

First, we need to introduce a lemma.
Lemma 1: For p�9HTuaq9 , the sojourn time distribution

of customers who processor-share bandwidth of session F
cannot be regularly-varying with different index than in the
service time distribution.



INFOCOM 2001 102

Proof: This is a simple extension from Theorem 1.
Since in a GPS queue, session F is guaranteed to receive
p�9/T a49 portion of bandwidth, then by directly apply-
ing Theorem 1 we get the upper bound that is regularly-
varying with index - NP9 . On the other hand, if the other
sessions are all idle, then the full bandwidth is assigned
to this session and by Theorem 1, the lower bound is also
regularly-varying with the index - NP9 . Therefore, the so-
journ time distribution cannot be regularly-varying with a
different index.

It is worth noting that this does not imply that the so-
journ time distribution of the customer in session F will be
regularly-varying with index 1ON 9 . In fact, it may not have
regularly-varying distribution at all, depending on the be-
havior of the other sessions. However, since the sojourn
time distribution is bounded by two regularly-varying dis-
tributions with the same index as the service time distri-
bution, the time required to complete the service of each
customer is not significantly different than in the previous
scheme.

The condition a49 g"p�9 is a sufficient but not necessary
condition for source F to be stable (or the workload in the
queue does not increase indefinitely). Borst et al. [9] show
that even for a7Th! and aq9�T^p�9 , source F can still be stable
within certain conditions. The more interesting question is
whether the global stability condition � a^gu!�� would be
enough to guarantee no degradation in the performance of
all customers. Borst et al. demonstrate that under a certain
condition, induced burstiness can occur as in the following
theorem.

Theorem 2 (Borst et al. [5]) Assume that the arrival
process for class 2 customers is Poisson, and the service
discipline is GPS. If a * Thp * , a *

� a��2g"! , < ' � �������EI)G ,
and V\W�<>' * T^	[YB �� � V\W�<>' � T^	4Y � as 	%d e , then

V\W D * T^	[YB�
p��
1Ha	�
p��

a��
!
1na * 1na��

V7W 8 '� T^	���� a * 1Op * �CY
(2)

where 8 '� can be obtained from Theorem 4 by letting 
  
p � and a  a � .

Or in other words, improper rate assignments might
cause the workload in a source to be induced to be as
bursty as the residual busy period of the other queue. This
scenario can be extended to the many sources case al-
though the asymptotic workload distribution might be ex-
tremely difficult to derive. In the following theorem, we
show that not only the workload distribution is affected,
but the sojourn distribution of customers who processor-
share this session can also be induced to be burstier.

Theorem 3 (Lower bound) Assume that the customers
arrival are Poisson processes, a * T p * , a *

� a	�_g ! ,
and <��?; FQ "!�;�
 are regularly-varying with indices 1ON���T

1ON * . If the service discipline in queue 1 is processor shar-
ing, then ���XT�� ;bV\W�@��"T�� Y��������&� where �����&� is a
regularly-varying function with index 1ON�� � !O1�� .

Proof: The proof of this Theorem is stated in Ap-
pendix A.

As a consequence of Lemma 1 and Theorem 3, if the
total offered load is enough for the queue to be stable
( aHg"! ), we can lower the guaranteed rate of queue 2 and
increase the guaranteed rate for queue 1, so that the tail
of the sojourn time distributions of both connections are
of the same indices as the tail of their respective service
time distributions. In doing so, customers utilizing queue
2 will receive no significant service degradation while the
customers in queue 1 would receive significantly better
service time. This idea can be generalized to a scenario
where there are more than two queues, in which if queues
with guaranteed service rate higher than offered load lower
their guaranteed service rates, then customers in other con-
nections would receive significantly better service without
degrading customers that are already receiving good ser-
vice.

Therefore, it is very important for an aggregate TCP
connection to come up with an algorithm to adjust its ser-
vice rate cooperatively with the other connections. The
difficulties of doing this on the Internet arise from the fol-
lowing reasons. First, the architecture of the Internet is
decentralized such that each connection has no knowledge
of the number or the status of the other connections uti-
lizing the same bottleneck link. So in adjusting the rate,
this aggregate TCP connections need to work only on the
information available locally (such as queue length in the
aggregate TCP buffer, round-trip delay or packet losses).
Second, the offered load from users and the network con-
ditions are always changing with time, with the change
in each component at different time scales. Last, the al-
gorithm needs to take into account the existing TCPs in
the Internet. This new algorithm should neither penalize
nor favor the previous implementations of TCP while the
rate adjustment algorithm should help improve the perfor-
mance when working with similar aggregate TCP.

In the case where a T ! , aggregate TCP connections
should try to adjust their weight to the lowest possible that
is still greater than their offered load. By doing this, they
free up a portion of bandwidth which might help some
connections that would become unstable without help. Al-
though with aETh! , it is unavoidable that some connections
would face instability.

III. RATE-ADJUSTMENT ALGORITHM

First, we need to establish a relationship between the
portion of bandwidth a TCP connection receives and the
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parameter settings in the TCP congestion-control algo-
rithm. The TCP implementation we based our design on is
TCP Vegas [10], although we could extend a similar idea
to TCP Reno [11] with minor adjustments.

Following the analysis by Bonald [12], we found by
fluid approximation that if we let �  �

, where � and�
are the parameters of TCP Vegas, then all TCP Vegas

connections will get approximately !P�ML fraction of the
bottleneck bandwidth when L is the number of the ac-
tive connections. We introduce a new parameter � 9 �����
as the weight of connection F . It is easy to show from
[12] that when connection F adapts its congestion window
similar to the sum of � 9 TCP Vegas connections (increas-
ing/decreasing congestion window � 9 packets per round-
trip, and setting �^ �  �� 9 ), then the connection F will
get

p 9  � 9
rHs� t * �

� (3)

fraction of bandwidth where L is the number of active
connections. The trace from a simulation demonstrating
such behavior is shown in Figure 1.
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Fig. 1. Sample Congestion Window evolution of Modified TCP
Vegas Connections with different 	 .

From this argument, we can relate the portion of
bandwidth each connection is getting as the function of
�
� * ;�� �P;��S����;�� s � . As stated earlier, our objective is to adapt
the parameter � 9 such that p�9 T_a49 for all F when the total
offered load is less than the bottleneck link capacity. The
range of � 9 needs to be limited to !�j�� 9 j�
 9 , where 
 9
is the number of active local connections utilizing aggre-
gate connection F . We need to limit the range of � 9 so that
I-TCP would not behave more aggressively than when we
utilize separate TCP connections and penalize any connec-
tions using other implementations of TCP.

A rigorous analysis of this system is very complicated
as various aspects of the system are all coupled together.
Thus we assume that the dynamics of each mechanism are
of different timescales. Given two mechanisms � and � ,
we denote � g�g�� as the case where mechanism � settles
to a steady state much faster than mechanism � . We as-
sume that network dynamics g�g congestion window dy-
namics g�g offered load dynamics g�g connection-level
dynamics. For example, when analyzing the bandwidth
each TCP connection receives after its congestion window
has changed, we can analyze each connection as if it got
a new share of bandwidth immediately after its congestion
window changed. With the separation of timescales, we
can ‘search’ for the appropriate value of � while treating
the offered load ( a ) as a constant. Then the problem in
two dimensions is, in fact, a line search problem shown in
Figure 2.

φ

φ

1

2 φ = ρ

φ = ρ

φ = ρ + ε

φ = ρ + ε

φ + φ = 11 2

1 1

2

2

1

2

2

1

Desirable Parameter Region

Fig. 2. Two-dimensional Line Search Problem for the appropri-
ate values of 	 .

A. Protocol Specification

We use the queue length in the aggregate TCP buffer as
an indication of the difference between p � and a � . Suppose
a � Thp � and all other connections fully utilize their given
bandwidth, then the queue will grow approximately lin-
early as a function of time with slope a � 1Hp � . The goal of
the rate-adjustment algorithm is to use this information to
increase p � into the desirable parameter region. There are
two alternatives to achieve that goal : (1) increase � � , or
(2) decrease � 9?; for any F�� �� . Since each connection has
to work asynchronously and without knowledge of other
connections, each I-TCP adjusts its � by an additive in-
crease/multiplicative decrease scheme similar to what TCP
Reno used to hunt for available bandwidth. If the slope of
queue length is positive, then � 9Q �� 9 ��� � 9 . If the slope of
queue length is negative, then I-TCP does a multiplicative
decrease or � 9Q c�&!
1�� ��� 9 .
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The multiplicative decrease part of the rate-adjustment
algorithm is more simple than the additive increase part.
Usually, we prefer to increase � more often than to de-
crease � since higher value of � will enable the congestion
window to converge to the steady state much faster than a
low value of � . Therefore, to make decreasing � more dif-
ficult and less often than other connections increase their
� , we decrease � by a factor � g�� g ! only when the
slope of the queue length is negative in two consecutive
rounds. Because if other connections increase � before
that, p for the connections that have p�9 T a49 would be de-
creased and if it decreases too much, the slope of queue
length might turn positive in the other round. By this
mechanism, we can prevent oscillation in the value of �
to a certain degree.

One major difference of our algorithm compared to the
additive increase/multiplicative decrease algorithm in TCP
Reno is that the additive increase size (

� � ) is not constant
and can be reasonably approximated to enable faster con-
vergence. Now suppose that we can accurately approxi-
mate the slope of queue growth in queue � ( � � ), then

� ��� a � 1/p �  _a � 1 � �
r�s9�t * � 9

(4)

We need to find the value
� � � that makes p �  a � ���

where
�

is a parameter in this algorithm and its importance
will be discussed in details later. So we have

a � ��� 1 � � � � � �
r�s9�t * � 9

� � � �  �� (5)

From (4) and (5), we get

� � �  ��� � ��� �
! 1^� a � ��� � �

s�
9]t *
� 9J�
T �	� � ��� ��� s

�
9�t *
� 9 � (6)

In the Internet, we can approximate the value of � by the
slope of queue growth divided by the bottleneck band-
width, or

� �
� slope of queue growth
Bottleneck Bandwidth

(7)

Typically the value of bottleneck bandwidth is not
known to a TCP connection and we could approximate it
by the expected bandwidth in TCP Vegas with parameter
� � with the following relationship :

� �
r�s9]t * � 9

Bottleneck Bandwidth � Expected Bandwidth

 
���
 5
minimum RTT

(8)

where 
���
 5 is the size of congestion window.

Let

����  (slope of queue growth)(minimum RTT)

���
 5 (9)

Or � �� � r��������� �
��� � � . Now define

� � ����  � � ���	� �� ��� � � �  �� � ����� � s�
9�t *
� 9 ��� � � �

g �	� � ��� ��� s
�
9�t *
� 9 �
g � � � (10)

Note that
� � �� uses only knowledge of � � ; min RTT ; 
���
 5 ,

and slope of queue length which are all available locally
and will be used as the value to add to � � in the additive
increase phase. The factor 0.5 is used to preserve the in-
equality in the case of an imprecise approximation in (8)
and would not have any impact in the proof of stability
later.

As described earlier, I-TCP needs to calculate the slope
of its queue growth. In practice, we can implement this by
doing a linear regression on the sampled queue length. We
need the following parameters : no. of sample (C) is the
number of samples used to calculate the slope and sam-
pling period (P) is the interval between each sample. Let!
� be the slope of queue length calculated by a linear re-
gression on the sampled queue length and "3 be the average
queue length. Then we can calculate � � in (9) by using

!
�

as the slope of queue growth and � will be updated every#�$
seconds.

We can show under certain assumptions that this addi-
tive increase/multiplicative decrease algorithm will con-
verge to p�9�T aq9&; !>j^F)j^L

Proposition 1: Consider the following assumptions : (i)
only one connection adjusts its value of � at a time, (ii)
connections that have pXgua will always adjust their �
before connections that have pcT a , (iii) if a49\g p�9\g
a49 �%�

, then � 9 would not be decreased, and (iv) � 9 would
never have to decrease to 1.

Under the assumptions stated above, by using the ad-
ditive increase/multiplicative decrease algorithm with the
additive weight

� � � as in (10) and multiplicative decrease
factor of �); �/g �hg:! , all the connections can achieve
p_T�a within finite time when rns9�t * p�9( !�; r s9]t * � a49

�
� � gh! .

Proof: The proof of this proposition is given in Ap-
pendix B.

Alternatively, we can prove the convergence by using a
system of differential equations. Suppose all connections
continually update their � . Then &	 9% fa49 1 � �	')(+*

r �� ���,��� ')(+*
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when 	 9����&�
T � , and from
� � � in (10),

&� 9����&�  
�
� � ��� &	 9 � �?��r s� t * �

� ���?� ��� � 9 ���&��� if &	 9 T �
1 �49 � 9����&� otherwise

(11)
which if we further simplify to additive increase/additive
decrease, we have

&� 9=� �?�) �� ����� a49 s
�
� t *
� � ���?�K1 � 9����&� ��� � 9=� �?��� (12)

This linear system has � � � W r s9�t * a49
� � 1H!�; � 1H!�;P����; � 1H! ]

as eigenvalues. Therefore, the system is stable if
� g"! 1

r�s9]t * a 9 .
Since we do not have unlimited buffer space in

the router, it is preferable to try to keep the aver-
age queue length below max queue length by intro-
ducing an additional parameter high th. If "3 T
�
��F ��� �&������� �q	������	��� �
� 
 ���?��� and � � T � , then every
time we update � , we would increase � at least one unit if
the change does not cause � to be out of range to try to get
enough bandwidth to control the queue length to be below
max queue length and would not decrease � even when � �
is negative.

Moreover, when the average queue length is very
small, a small burst can cause an unrealistic value of
� � . Therefore, we would increase � only when the av-
erage queue length � "3�� is greater than a certain threshold
� � � � �?���P�
� �q	����
���
� �
� 
 �	�&��� .

We need to introduce a random element into the time
to update

� � to prevent synchronization between each I-
TCP connection. Therefore, instead of updating

� � every#�$
seconds, we have a random waiting time determined

by multiplying a uniform random variable between 0 and
1 by

#�$
, after which we start sampling the queue length,

and finally,
� � � is calculated and � is updated after another#�$

seconds have passed.

B. Tradeoffs in parameters selection

The parameter
�
, as mentioned in Proposition 1, ensures

the convergence of the system when
� g *s �&!�1 a[� . On

the other hand, a larger value of
�

will speed up the con-
vergence. Typically, it would be better to choose a conser-
vative value of

�
as shown later in the simulation; a small

value of
�  � ��! suffices for the rate assignments to con-

verge in reasonable time.
For connections to reduce their share of bandwidth, the

parameter � plays an important role. If � is chosen to be
very large, then the connections will suffer a severe per-
formance loss before the additive increase mechanism re-
claims the necessary portion of bandwidth back. However,

small � takes very long time before enough bandwidth is
released for the other connections that need it. Especially
in our scheme, a decrease in � happens less frequently and
is much harder. If there are many I-TCP connections shar-
ing the same bottleneck link, however, it might not be as
necessary for � to be large as with a few connections be-
cause cumulative bandwidth releases from many connec-
tions can be substantial.

The most important parameters in practice might be the
number of samples (

$
) and sampling period (

#
). In the

earlier analysis, we assume we can perfectly estimate the
value of � � . In practice, however, it is necessary for I-TCP
to distinguish the increase in buffered packets between a
burst from a new file transfer while a remains constant and
a real trend where pHg a . First, the sampling period needs
to be large enough to let the network dynamics returns to
steady state after a change in � occurred. Then the num-
ber of samples need to be large enough to average out any
temporary burst from a file. This value might have to be
quite large if the average filesize is large comparing to the
bottleneck bandwidth and might have to be even larger for
heavy-tailed files because a file might be extremely large
and if the number of samples is too small, this connec-
tion might be temporarily tricked into increasing its � even
when its current rate is good enough. It is obvious, how-
ever, that the large product of

#�$
will result in a slow

dynamics in adapting � , which might result in networks
operating in an inappropriate settings for a long time. But
since the trend of bandwidth in the Internet is steadily in-
creasing, this might be less of an issue in the future and
� -dynamics can be fairly fast.

Since the number of active connections utilizing an I-
TCP connection can also be time-varying, its dynamics
also plays a role in the overall performance. We have not
considered the scenario where 
 varies with time here but
our conjecture is that if the connection-level dynamics are
slower than � -dynamics, then we could still expect signif-
icant improvement in the performances by our algorithm.

The parameters max queue length, low th, high th are
used together to specify the threshold where I-TCP will
switch its operating mode. If the average queue length
is smaller than � � � � �?�����
� �4	������	�����
� 
 ���?��� then I-TCP
would not increase � to prevent a small fluctuation in the
buffer from causing an abrupt change in � . In addition,
I-TCP would not decrease � if the average queue length
exceeds � ��F �����?�����
� �4	������	�����
� 
 ���?��� and will increase
� by at least one unit if � � is non-negative to try to force av-
erage queue length to be below � �4	������	�����
� 
 ���?� . This
would not guarantee that the average queue length would
not exceed this value, however. It just indicates that I-TCP
will try its best to do so. There are many options I-TCP
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can do when the average queue length exceeds this thresh-
old. It might inform the local sources to slowdown, or
simply does not return the ACK packets in the local TCP
connections to force a timeout and wait until the average
queue length in the aggregate gateway decrease below the
threshold. In our simulations, we do not force any of these
options but let the queue continue to grow as necessary to
mimic a � #��

queue as closely as possible.

IV. SIMULATIONS

In this section, we implement the protocol as described
earlier and then show that simulation results agree with the
theories presented in Section III. We later conclude with a
discussion of the results.

A. Simulation Setup

We use ns [13], an event-driven simulator, as our simu-
lation environment. Consider a client-server network con-
sisting of one server and 10 clients in each of the two sub-
nets. Each client is linked to an aggregate subnet gateway
with a full-duplex link with speed 100 Mbps and delay 1
ms. Each subnet is then connected to a common router by
link with speed 100 Mbps and delay 10 ms. This bottle-
neck router with speed 10 Mbps and buffer 10000 packets
connects to the server with link delay 10 ms.

In each subnet, each client generates a file to transfer to
the server with exponentially distributed interarrival time
with mean 1 second. The filesize is determined by a Pareto
random variable with mean � 65000, 30000 � bytes and in-
dex � -2.5, -1.2 � . Each client establishes a local TCP Ve-
gas connection to its aggregate gateway and transfer the
file into the gateway’s buffer. We modified the TCP Ve-
gas implementation in ns to have the additional parameter
� as the weight of the connection and then use this mod-
ified TCP Vegas to transfer data in the gateway’s buffer
to the server. This � is adapted according to the rate-
adjustment algorithm described in the previous section.
The throughput received by this modified TCP Vegas con-
nection are being shared equally among each buffered file
by the round-robin algorithm. In this study, we suppose
there is no overhead in aggregating all streams together.
The practical issues of aggregate TCP such as split trans-
action are discussed in details in [3].

In our first simulation, we simulate the induced bursti-
ness in sojourn time distribution by two aggregate TCP as
described in Theorem 3 by disabling our rate-adjustment
mechanism (fix �o 
  ! � ) and letting a * T � � � ,
1ON * g 1ON�� , and a��(g � ��� . The results are then compared
to when the rate-adjustment is enabled. The parameters
used for I-TCP is shown in Table I.

TABLE I
PARAMETERS IN THE TWO-SUBNET SIMULATION.

parameters value

number of sample (
$

) 180
sampling period (

#
) 0.5 second


 10
max queue length 200000 packets�

0.1
� 0.2
� � � �?� 0.2
��F � � �&� 1.0

B. Simulation Results

Figure 3 shows the tail of sojourn time distribution of
customers in Subnet 1 which have a *  � � � 
 . Since

  ! � in both I-TCP connections are equal, without
rate adjustment, both connections have pH � � � and since
the tail of service time of customers in Subnet 2 is heavier
than in Subnet 1 ( N�� gUN * ), customers in Subnet 1 will
experience induced burstiness in their sojourn time distri-
bution as shown in Theorem 3. The slope of the tail of so-
journ time distribution without rate adjustment in Figure 3
is around -0.4, a slightly lighter than -0.2 predicted by The-
orem 3. The reason that the tail dips significantly after 100
seconds is due to the finite time effect, or the events that
is large comparing to the simulation time are less likely
to occur than in the actual distribution. Anyway, it is ev-
ident that without rate adjustment, customers in Subnet 1
will receive extremely bad services which are unpropor-
tional to their service time. With rate-adjustment mecha-
nism, the tail of sojourn time distribution of customers in
Subnet 1 clearly has the slope as the service time distribu-
tion and receives significantly better service than without
rate-adjustment.

It is expected that with rate-adjustment, sojourn times of
customers in Subnet 2 with rate-adjustment will be greater
than without rate-adjustment because I-TCP of Subnet 2
has to give up a portion of its bandwidth to assist I-TCP
of subnet 1. However, Figure 4 shows that the differences
in sojourn time distributions in both case are not as signifi-
cant as in Subnet 1 and both tails still have the same index
as their service time distribution. Therefore, by giving up
small portion of bandwidth, customers in Subnet 2 receives
only a minimal degradation in their services while cus-
tomers in Subnet 1 receives significantly better services.
In other words, with rate adjustment, all customers receive
a ‘fair’ service in a sense that the time required to finish a
file transfer is proportional to its file size.

The convergence of rate assigned to both connections
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Fig. 3. Comparison of tail distribution between filesize and
sojourn time of aggregate TCP with and without rate adjust-
ment for clients in Subnet 1.
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Fig. 4. Comparison of tail distribution between filesize and
sojourn time of aggregate TCP with and without rate adjust-
ment for clients in Subnet 2.

are shown in Figure 5. It shows that the guaranteed rates
for both connections converge to a value p T a . It might
take a long time before the rates finally converge but the
more important issue is that I-TCP of Subnet 1 operates
in the region where p * Tua * almost from the start and
therefore preventing induced burstiness from happening.

C. Multiple I-TCP connections simulation

In the previous section, we only simulated two I-
TCP connections. Similar settings will be simulated but
the number of I-TCP connections will be increased to
four to see whether the convergence in rate assignment
still holds or not. Each client in each subnet gener-
ates files with index � -2.5, -1.2, -1.7, -2.2 � and mean
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Fig. 5. Bandwidth allocation for subnet 1 and 2.

� 35000,10000,10000,30000 � bytes with interarrival times
of one second. However, we decrease the number of sam-
ple (

$
) to 120 samples.

Figure 6 shows that the the rate assignment for all the
connections converge to the region where plT_a . One in-
teresting note is that we use a smaller sampling window
(120 samples) than in the previous simulation. This is be-
cause the mean file size in this simulation is smaller than in
the previous simulation, enabling us to smooth the average
load in smaller amount of time.
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Fig. 6. Bandwidth allocation for the four-subnets simulation.

V. CONCLUSIONS

In this study, we have demonstrated the drawbacks of
the simple aggregate TCP idea. More specifically, an ag-
gregate TCP connection can be induced to be more bursty
by other sources which have heavier tailed service times
and the performance of the aggregate TCP connection will
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be severely degraded in this scenario, comparing to when
each file utilizes its own TCP connection. We then propose
the rate-adjustment algorithm which approximates the dif-
ference between the available bandwidth and the offered
load of each aggregate TCP connection and then adapts
accordingly. The connections that have excess bandwidth
will give up a portion of its bandwidth to other connections
without causing a significant performance loss for its own
customers. We prove that, under a separation of timescale
assumption, aggregate TCP with rate adjustment (or Inte-
grated TCP) adapts its transmission in such a way that pre-
vents induced burstiness from occurring. The simulation
results also support the theoretical findings in this study.

One might question whether the proposed Integrated
TCP would be useful in practical environments, where the
environments are much more diverse than what we have
considered in this study. For example, the network path
that I-TCP connections traverse might change during the
long lifetime of such connections. Or the number of local
TCP connections can be changing with time. The policy
to admit or terminate a local connection from an Integrated
TCP connection would have an impact on the overall per-
formance. Therefore, further studies involving these dy-
namics are still needed.

Although our proof of induced burstiness in the sojourn
time distribution assumes that the distributions of filesize
are regularly-varying. We believe that an extension to a
wider class of distributions is possible. And since our
rate-adjustment algorithm does not assume anything about
the filesize distribution, we believe it can still be used to
prevent induced burstiness in these cases. Another inter-
esting future work is to investigate the parameters setting
in I-TCP and find a methodology in choosing the optimal
values for the algorithm. For example, it is preferable to
accurately approximate the queue growth in the smallest
sample size possible to enable faster convergence.

Future works will also include the performance of I-
TCP in the presence of TCP Reno or other implementa-
tions of TCP. In many studies [12], [14], TCP Vegas is
shown to perform poorly with the presence of TCP Reno.
By utilizing RED gateway, it is believed that TCP Vegas
would be more competitive to TCP Reno connection. So it
might be interesting to see how I-TCP performs with RED
as the buffer management scheme. Furthermore, it would
be interesting to compare the performance of I-TCP with
separate TCP connections. If the results turn out to be in
favor of I-TCP, it would add an incentive for the deploy-
ments of I-TCP in the Internet.
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APPENDIX

I. PROOF OF THEOREM 3

First, we need the following theorems.
Theorem 4 (Borst et al. [5]) If the arrival process in to a

queue which is serving at constant rate 
 is Poisson, <>6 �
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I)G , and aEg 
 , then

V\W 8 ' T^	4YB� 



1Ha V\W < ' T 	�� 

1Ha �CY

Theorem 5 (Jean-Marie and Robert [15]) If � ( is the
number of customers in the transient processor-sharing
queue at time � with a7Th! , then

�����( � � �
��(
�  � ;��������

where � is a constant, non-negative solution of the follow-
ing equation

�  � �&!
1
� �������-$%�
543q��� (13)

and $ is the distribution of the service time of customers.
Before giving the formal proof of Theorem 3, we first

provide an intuitive interpretation. When queue 2 is busy,
queue 1 only serves at rate p * , while it receives service
requests at rate a * TXp * . Therefore, the number of cus-
tomers in queue 1 grows linearly asymptotically as shown
in Theorem 5. This growing number of customers re-
sults in longer completion time of each customer who
processor-shares this queue. The number of customers will
keep growing until queue 2 becomes idle again, at which
point queue 1 will start finishing work from the accumu-
lated customers. Therefore, the tail of sojourn time dis-
tribution of customers arriving in queue 1 while queue 2
is busy will behave asymptotically at least as heavy as the
residual busy period of queue 2, which is one index heavier
than the service time of queue 2.

Proof: First we introduce a modified system (MS)
which has the following behaviors: (i) Queue 2 is always
served at rate 1 (ii) Queue 1 is served at rate 1 when queue
2 is empty, and is served at rate p * when queue 2 is busy.
It is easy to see that for the same arrival process in the
modified queue 2, � � �
	 �����?�
T � ��� � � �
	�
��� ���?� T � � .
Therefore in the modified system, queue 1 is being drained
at the rate equal or faster than in the original system, re-
sulting in smaller sojourn time for each customer. As a
consequence, VE�C@ � Tc	�� �"V �C@����� T"	�� . In the mod-
ified system, with probability

� �7gX! , a tagged customer
in queue 1 arrived while queue 2 is busy. Then the service
rate of queue 1 will be p * and the remaining busy period
of queue 2 will be 8 6� by PASTA property. The sojourn
time for this customer is bounded from below by the so-
journ time of a customer in queue 1 that arrives at time 0
while queue 1 is empty and queue 2 is busy. Let � � ���P� be
the number of customers in queue 1 at time � . Then we
have

V\W�@���T �
Y � � ��V7W 8 6� T � ;=< � �
� (
0

p *� �q����� 5�� Y (14)

Let � � � � �?� be the number of the customers in queue 1
starting with zero customer, having arrival process similar
to the arrival process after the tagged customer arrived and
being served at rate p * . Then (14) becomes

V7W�@ ��T � Y � � � V\W 8 6� T �=;=< �2T
� (
0

p *! � � � � ����� 5�� Y

� � � V7W 8 6� T � ;=< � T^p * � 0
� � (

(��
p *! � � � 1 � ��� 5���;

� � � ����� T`�
� 1 � ����� � �>T � 0 Y (15)

Since 8U6� ;=< ��;!� � � are independent in the modified sys-
tem, then

V7W�@�� T � Y � � � V\W�< ��T^p * � 0
� � (

("�
p *! � �
� 1 � ��� 5�� Y

V\W 8 6� T �
Y V7W#� � � ���P�
T`�
� 1 � ���
� � �2T � 0 Y (16)

 � � V\W�< � T^p * � 0
� p *� � 1 � � ��$

! � �
� 1 � � �
! � � � 1 � � � 0 Y

V\W 8 6� T �
Y V7W#� � � ���P�
T`�
� 1 � ���
� � �2T � 0 Y (17)

From Theorem 4, V\W 8U6� T �
Y�� ** ��% V7W�<>6 � T �M�&!21
a �CY � (�&
')(+* �, ( ' * �-% * ' ( * ( . And from Theorem 5, given any
� ;�. T � ;�/ � 0 such that V7W#� � � ���P� � �
� 1 � ����� � �XT
� 0 Y �c!(10. , where � satisfies the equation �/ �

* �
p * 1. � ����� $2143 �
543q��� . Therefore,

����� ��$�5( ��� V7W�@ ��T � Y � W � �-�&!O16.q��� p *� 1 � � � , �

� ��$h�
� 1 � � �&� � , � � � , ( � *
N����&!
1na � , ( � � Y �h! (18)

which implies

����� ��$�5( ��� V7W�@ ��T � Y � W � �-�&!O16.q��� p *� 1 � � � , �

� � , ( � * ��7
N����&!
1na � , ( � � Y �h! (19)

for any �>T � .
II. PROOF OF PROPOSITION 1

To illustrate the problem, we first consider the simple
L: �
 case and then extend the result to the more general
case under the following assumptions : (i) only one con-
nection adjusts its value of � at a time (ii) connections that
have p g a will always adjust their � before connections
that have p T"a (iii) if a49 g"p�9�g`a49 �%�

, then � 9 would
never be decreased (iv) � 9 would never have to decrease to
1. Assumptions (i) and (ii) enable us to analyze the system
as a synchronous system which is simpler to analyze. As-
sumption (iii) is used to force the convergence to be within
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finite time. And finally, Assumption (iv) is needed to pre-
vent the technical difficulties which might arise for a very
low value of a .

Suppose that initially, � * ��� � *
� � �=�� p * T a * ,� � ���
� *

� � � �  p � g a � and a *
� a � go! , then the de-

sirable parameter region exists and we have the following
lemmas.

Lemma 2: Assume p * T a * and p � g a � , then by using� � � � as in (10), the new rate p � * Tha * and p � � gha�� ���
if

�ig � gh!O1na * 1na�� .
Proof: Since the upperbound for the value of p�� by

using
� � � � in this scheme is a�� � �

, if
� gh!�1ia * 1ia�� , then

p � * T !(1na��
1
� T_a * or the increased value in � � would

not cause p * to decrease smaller than a * .
Lemma 3: Assume p *  � * ���
� *

� � �M�OT a * and p���g
a�� . If / �_T � such that �
� � � �4�����
� *

� � � � �4�EToa��
and � � � �7g 
 � . Then by using

� � � � as in (10), the rate
assignment will converge to p � * T a * and p � � T a�� in finite
time if ��g � g !O1Ha * 1na�� .

Proof: Since
� � � � T � � � � � � � � ��� �

, then if � exists,
it will take at most � 
 �4� ���

updates to achieve p � � T:a	� .
And from Lemma 2, we have p � * Tha * , thereby achieving
the desirable rate for both connections.

Lemma 4: Let p��9 be the guaranteed rate of connection
F after the � (�� update. If p � *  �� * ��� � *

� 
 �M�OT a * ;�p �� ga�� and p � � **  �b�&! 1 � * � � * �b�����&!O1 � * � � *
� 
 �M�ig"a * ,

then p
�
� Tha���;�� ��T�� . Furthermore, the rate assignment

will converge to p � * T:a * and p � � T a�� in finite time if
�ig � gh!O1na * 1na � .

Proof: Since p�� *  �� * ���
� *
� 
��M�
T a * and p � � **  

���&!)1 � * ��� * �������&!)1 � * � � *
� 
 �M�
g a * , then / � � ��g��%g

� � * such that ���&!�1 � * � � *
� �q�������&!�1 � * � � *

� � � � �q� T a * .
Lemma 4 then follows directly from Lemmas 2 and 3.

By Lemmas 2, 3 and 4, we essentially prove conver-
gence in the two-dimensional case, by using (10) to up-
date the value of � 9 for

� gU!�1 a * 1 a�� . This idea can
be extended to the case where the number of connections
L � 
 . Notice that now it is not always true that con-
nections with p�9 T_a49 will always remain in that region if
other connections increase their � . So we need to divide
the connections into two groups: 	�
o �-F � p�
9 T"a

9 �
and � 
  � F � p 
9 joa 
9 � represent the set of connec-
tions that has enough and not enough bandwidth after � (��
update, respectively. Define ��� 	 
 ���4 "r 9������ �
p 
9 1�a 
9 �
and ��� � 
 ���  cr 9���� � � a 
9 1lp 
9 � as the distance from the
current rate assignment to the offered load of these two
sets.

Lemma 5: For any initial conditions that satisfy the con-
dition in Proposition 1, there exists a finite integer ���  
����� ��� � �

� � *9 j �
�
9 ;%!hj FHjfL ;P!Zj �cj � � and

� � ��� 
 � ;�� 
!��  �
 � .

Proof: This lemma follows directly from the as-
sumptions in Proposition 1. For any initial condition, if
F �"�$# and �%#9 g 
n9 then there exists � � T � such that
� #9 g�� #'&9 j 
n9 . Let ( 
  � F �)� 
 � � 
9 g�
 
9 ��*+� 

be the set of connections that do not have enough rate and
can still increase their � . Since we assume that connec-
tions in 	 will not decrease their � if there exists connec-
tions in � that still can increase their � , then as long as
( 
 � -, ; � 
 � *9 � � 
9 ; �BF . And from

� � ��� � � � T � , then
(.
 �  -, for the first time at a finite integer � � .

Lemma 6: For all � g ��� in Lemma 5, either
��� �/
 � * ����g0��� �/
1��� or 	�
 � *  2	�
43 � F � where F is the
connection that increases � at the � (�� update.

Proof: It is easy to see that if a g:! , 	 
 � 5, for
any � . Then if connection F increases its � 9 at time � ,
then let

� p 9  p 
 � *9 1hp�
9 be the change in the rate,
which all other connections have to give up for the total
of
� p�9 . If p 
9 � � p�9%TUaq9 , then 	 
 � *  6	 
 3 � F � .

Otherwise, F ���/
 � * and since 	7
 � * � 8, , then a portion
�P; �ig �ig � p 9 must come from connections in 	 
 � * so
��� 	 
 ��� 19��� 	 
 � * ���- �� and since �:� 	 
 �:� 1;��� � 
 ���- !)1 a
for any � , then ��� � 
 � * ���4g<��� � 
 ��� .

Lemma 7: Suppose connection F decreases its � 9 at time� and F �=	 
 , p 
9 T a49 � �
and F ��� 
 � * , then / � � T � ,

such that 	�
�*>	�
?& and ��� �@
����4T<��� �@
$&A��� .
Proof: This condition indicates that ��!�1��Q� � 
9  

� 
 � *9 ;\p�
 9 T p 
 � *9 and (.
  , . Denote �CB �  
r # ��� � � # and a
B �  r # ��� � a # . Then we have ��� � 
 ���� 
aEDF�l1��CDF� ���
�GB�� � �CDF� � . Since ( 
 � *  � F � , then at
time � � ! only connection F can adapt its � 9 which will be
increased until time � � � ;H� � 
 where � 
 � *9 g�� 
 � �9 g
�G
9 and a49)j^p 
 � �9 j a49 ���

(from Lemma 2). At � � � ,
p 
 � �� T p 
� for all ��� UF , therefore, 	 
 *2	 
 � � and
��� � 
 ���4T��:� � 
 � � ��� .

Proof of Proposition 1: From Lemma 5, connections
in � 0 will increase their � until either their � hit the up-
per limit or their rates are enough. Then at time � � , ei-
ther ( 
 �  I, and � 
 � � I, or 	 
 �  !�;�
 ;��S����;�L by
Lemmas 5 and 6. After � � , connections from 	 will take
turn decreasing their � , where ��� � 
 ��� is a strictly decreas-
ing function of � except at time � when the condition in
Lemma 7 is satisfied, i.e. a connection decreases its � too
much and it temporarily joins set �?# � * . However, since
this is the only connection in ( # � * , it is the only con-
nection that can adapt until � � as in Lemma 7, in which
��� �$# & �:�4g���� �$#J�:� . For any �UT � and ��� �@
K���4T � ;4/ � � T �
where ��� � 
 ��� T<��� � 
$& ��� . Therefore, ���ML 
 ��� will eventually
converge to zero and will converge in finite time because
we can show that ��� � 
 ���A1;�:� � 
$& ��� in Lemma 7 is bounded
from below by � ��� � ���
r s9]t * 
�9J�ON�T � .


